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Abstract

By redefining test selection measure, we propose in this paper a new algorithm, Flexibke NBTree, which induces a hy-

brid of decision tree and Naive Bayes. Flexible NBT ree mitigates the negative effect of information loss on test selection by applying post-

discretization strategy: ateach internal node in the tree, we first select the test which is the most useful for improving classification accura-

cys then apply discretization of continuous tests. The finial decision tree nodes contain univariate splits as regular decision trees but the

leaves contain Naive Bayesian classifiers. To evaluate the performance of Flkxible NBT ree; we compare it with NBTree and C4. 5, both

applying pre-discretization of continuous attributes. Experimental results on a varety of natural domains indicate that the classification ac-

curacy of Flexible NBTree is substantially imp roved.

Keywords:

Decision tree-based methods of supervised learn-
ing represent one of the most popular approaches
within the AT field for dealing with classification
problems. They have been widely used for years in
many domains such as pattern recognition, data min-
ing, signal processing, etc. But standard decision tree
learning algorithms can handle discrete attributes on-
Iy
continuous and discrete variables is a key issue in ma-

Learning decision tree from data consisting of

chine learning.

The decision tree leaming algorithms proposed
before commonly apply discretization of continuous
, then use the test selection measure for

. ) 1, 4
discrete attributes ¥

attributed * 3
to construct decision tree, thus
continuous-valued predictive attributes can be incor-
porated into the learned tree. The effectiveness of
pre-discretization has been proved in practice. But
from the view point of information theory, the infor-
mation loss caused by pre-discretization may affect
test selection, then in turn degrade the classification

accuracy to some extent.

Naive Bayes is known to be optimal if predictive
attributes are independent given the class. Although
the conditional independence assumption is rarely
valid in practical learning problems, experiments on

real world data have repeatedly shown it to be com-

machine learning. hybrid decision tree, Naive Bayes.

petitive with much more sophisticated induction algo-
rithms' ”. Since the leaves of decision tree consist of
very few instances, we suppose that the distribution
of those instances approximately satisfies the condi-
tional independence assumption. If the leaves are re-
placed by Naive Bayes, the advantages of both deci-
sion tree (i.e. segmentation) and Naive Bayes (evi-
dence accumulation from multiple attributes) can be
utilized simultaneously!® .

Based on the above considerations, we redefine
the test selection measure to overcome the limitation
in handling continuous attributes and then propose a
new approach, Flexible NBTree, which induces a hy-
Flexible

NBTree mitigates the negative effect of information

brid of decision tree and Naive Bayes.

loss on test selection by applying post-discretization
stmtegy[ 1. at each internal node in the tree, we first
select the test which is the most useful for im proving
classification accuracys then apply discretization of
continuous tests. The finial decision tree nodes con-
tain univariate splits as regular decision trees, but the

leaves contain Naive Bayesian classifiers.

We introduce the post-discretization strategy in
Section 1. In Section 2, we describe the hybrid ap-
proach—Flexible NBTree. At last, we explain our

experimental results and sum up the whole paper in
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Sections 3 and 4, respectively .
1 The postdiscretization strategy

1.1 Test selection measure 0

Definition 1. The training set 7T consists of pre-
dictive attributes { X1, --» X} and class attribute C.
Each predictive attribute Xi is either continuous or
discrete.

Definition 2. Let P (°) denote the probability,
p () refer to the probability density function and
Count (*) the size of data set.

The aim of decision tree learning is to construct a
tree model which can describe the relationship be-
tween predictive attributes { X1, -+ X»n} and class at-
tribute C in set T.

Tree model: X1, ==+ Xp,—>C.

That is the classification accuracy of the tree
model on set T should be the highest. Correspond-
ingly the Bayes measure & which is introduced in
this section as a test selection measure, is also based
on this criterion.

Let X represent one of the observable, predictive
attributes. If X is discrete, according to Bayes theo-
rem, there will be
P(C: C/,X: xl-)

P(X — x,-) ’

(D
where x; is the value of attribute X, ¢ the class label
of testing instance. The aim of Bayesian classification

P(C=¢g lx=x)=

is to decide and choose the class that maximizes the
posteriori probability. Since P (X = xi) in Eq. (1) is
the same for all classes, and does not affect the rela-
tive values of their probabilities, it can be ignored.
When some instances satisfy X = x;, their class labels
are most likely to be

ci = arg maxP (C= ¢ X = xi)

= arg IcncggP(CZ G X = xi). @)

Correspondingly, if X is continuous, we will
have
P(C=¢ lx=x»)
 pX = x; |C= ¢)P(C= ¢)
o p(X = x;) ’
where p (X=x;) is a constant independent of C and
then

3

¢, = arg maxP (C = ¢ | X = x)
J

= arg ry@)c;p(X = xi lC= ¢)P(C = ¢). 4

Definition 3. Suppose X; has m distinct values.
We define the Bayes measure O as:

ZCount(X: xi N C= c;)

=1
0= N ) 5

where N is the size of set T. Intuitively spoken, Gis

the classification accuracy when classifier consists of
attribute X only. It describes the extent to which the
model constructed by attribute X fits class attribute
C. The predictive attribute which maximizes Ois the
one that is the most useful for improving classification
accuracy.

1.2 Discretization of continuous attributes

The aim of discretization is to partition the con-
tinuous attribute values into a discrete set of inter-
vals. According to Eq. (4), we have

ci = arg maxp (X = xi | C= ¢)P(C= ¢,
7

where conditional probability density function

p(X| C=¢) is continuous. Given arbitrary values

xi and xgs when x;—xj, there will be
p(X=1xilC=¢)P(C=¢)

—>p(X =1x; | C= ¢)P(C= ¢)).

So, the class labels inferred from Eq. (4) will
not change within a small interval of the values of X.
For clarification, suppose the relationship between
the distribution of X and C is shown in Fig. 1.

p{X)

T NS
Fig. 1. The relationship between the distribution of X and C.

We can see from Fig. 1 that

C= C1 (X1<X< X2 0r X4<X< X5),
C=rc2 (x2<< X< x3)s
C=1c¢; (x3< X< x4).

(6)
What should be noted is that the attribute values
(c1, 2, ¢3) are inferred from Eq. (4), not the true
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class labels of training instances. In the current ex-
ample, there are three candidate boundaries corre-
sponding to the values of X at which the value of C
changes: x2, x3, x4. If we use these boundaries to
discretize attribute X, the classification accuracy after
discretization will be equal to & So, the process of
computing Ois also the process of discretization. The
Bayes measure O can also be used to automatically
find the most appropriate boundaries for discretization
and the number of intervals.

Although this kind of discretization method can
retain classification accuracy, it may cause too many
intervals. The MDL principle, which is presented by
Dougherty et al. .
for their recursive discretization strategy, is used in

to determine a stopping criterion

our experimental study to control the number of in-
tervals.

Suppose we have sorted sequence S in ascending
order by the values of continuous attribute X. Such a
sequence is partitioned by boundary B to two subsets
S15 S2. The class information entropy of the parti-
tion denoted by E (X, B; S ) is given by
|i,l |‘Ent(S1)+ || R ”Ent(Sz),

where Ent (°) denotes the entropy function,

Ent(Si) =— 2P (¢j» SDloga P (¢ja Si)

ceC
J

E(X7B;S)7

and P (¢, S;i) stands for the proportion of the in-

stances in S that belong to class ¢;.

According to MDL principle,
within § is reasonable iff

. lo;x(N—D | AX.B:S)
Gain(X, B; S) = N + N )

where Gain(X, B; S >=Ent(S)—E (X, B; S) is the
information gain, which measures the decrease of the

the partitioning

weighted average impurity of the partitions S, S2,
compared with the impurity of the complete set S. N
is the number of instances in set S, A(X, B; )=
log2(3* —2)—[ k“Ent (§)— k1" Ent (S1)— k2 *
Ent(S2)],

ed inset Si. This approach can then be applied recur-
sively to all adjacent partitions, thus create the final
intervals on attribute X.

ki is the number of class labels represent-

1.3 Parameter estimation

M aximum likelihood estimation of the probabili-
ty and joint probability in Eqs. (2) and (4) is
straightforw ard,., then

Count (C=¢))
Count(C:cj /\X:xi)
N .

P(C=cjy X=xi)=
(7

Kernel-based density estimation is the most
widely used non-parametric density estimation tech-
nique. Compared with parametric density estimation
technique, it does not make any assumption of data
distribution. In this paper we choose it to estimate
conditional probability density function in Eq. (4):

¢) = —EK[

P Xk

pA(X — Xi ‘C -
hii=

(®)

where xk (k=1, ---, n) is the corresponding value of

attribute X when C = c,, K (°) is a given kemel

function K (¢)= Qu) ik
sponding kernel width,

. And #; is the corre-
n is the number of training
instances when C=g¢;.

This estimate converges to the true probability
density function if the kernel function obeys certain
smoothness properties and the kemel width is chosen
appropriately!” . If A; chosen is too small then spuri-
ous fine structure becomes visible, while if 4; is too
large then the bimodal nature of the distribution is
obscured. One way of measuring the difference be-
tween the true p (X= x;| C= ¢) and the estimated
p(X=xil C=¢j) is the expected crossentropy, an
unbiased estimate which can be obtained by leave-one-

out cross-validation' ¥

CVeg =— = 210%[ — Dhy, Z;tkK[ hj ]}

where h;= cX/J_n and ¢y is chosen to minimize the
estimated cross-entropy. In our experiments, we use
an exhaustive grid search where grid width is 0. 01

and the search is over ¢y €[ 0.2, 0.8] 1",

2 Flexible NBTree. the hybrid learning algo-
rithm

We can now introduce the Flexible NBTree
learning algorithm, which is exactly the same as Ko-
havi’ s NBTree!® but in two respects: the method
used for discretizing continuous attributes and the
Naive Bayesian classifier used for constructing leaf

node.

The NBTree learning algorithm pre-discretizes
the data by applying an entropy-based algorithm and
uses standard Naive Bayes at, the leaf node to handle



544

Progress in Natural Science Vol. 14 No. 6 2004

pre-discretized and discrete attributes. The Flexible
It

uses post-discretization strategy to construct decision

NBTree algorithm we propose is shown below.

tree and replaces leaf node with another version of
Naive Bayes, Flexible Naive Bayes[ ", which can di-
rectly handle continuous attributes, thus make dis-
cretizaiton unnecessary and the negative effect caused
by discretizaiton can be avoided.

Input: a training set S of pre-classfied in-

stances.

Output: a hybrid decision tree with Flexible
Naive Bayes at the leaves.

1. From the predictive attribute set X1, -+ Xy
select test X; which maximizes 0.

2. If X; is continuous, partition its value into a

discrete set of intervals according to subsection 1. 2.

3. Partition S according to the value of X;. If
X is continuous, a multi-way split is made for all
possible discrete intervals; if X; is discrete, a multi-

way split is made for all possible values.

4. If the descendant node satisfies specific stop-
ping critera, create a Flexible Naive Bayes as the leaf
node and return.

5. For each descendant node, the entire process
is recursively repeated on the portion of S that

matches the test leading to the node.

3 Experimental results and analyses

In order to evaluate the performance of Flexible
NBTree, we conducted an empirical study on 12 data
V. Be-
cause each data set consists of a set of classified in-

sets from the UCI machine learning repository

stances described in terms of continuous or discrete
attributes, they seemed likely candidates for contrast-
ing the behavior of Flexible NBTree and NBTree.
For comparison purpose, the stopping critera in our
experiments are the same: the relative reduction in
error for a split is less than 5% and there are no more
than 30 instances in the node. We also considered an-
other method to provide a reference point: the C4.5
Release 8!, awell-known algorithm for decision tree
induction.

For each domain, we used ten-fold cross valida-
tion to evaluate the generalization accuracy of the
three induction algorithms. Table 1 summarizes the
characteristics of the data sets and compares the ex-
perimental results. C4. 5 denotes the decision tree
that applied a local, M DL inspired penalty to adjust
the gain of a binary split to pre-discretize continuous
values. NBTree denotes the decision tree that learned
from the data sets which were pre-discretized using an
entropy-based algorithm. The symbols ~/ (X ) denote
relatively better (worse ) performance of Flexible

NBTree to NBTree.

Table 1.  Description of data sets and comparison of experimental results
DataSets Instances Continuous attributes Discrete attributes C4.5 NBTree Flxible NBT ree
Abalone 4177 7 1 73.8+3.6 75.0+£2.1 78.66.8~/
Anneal 898 6 32 81.3+1.6 85.6+3.5 87.5+5.2+/
Australian 690 6 8 65.8+1.9 62.2+3.2 61.048.7X
Breast 699 10 0 63.81+4.6 64.31+2.9 65.9+5.8+/
Crx 690 6 9 71.61+8.6 75.4+3.9 76.7+2.5v
Diabetes 768 0 67.21+2.6 69.8+1.9 7.7+£5.7V
Geman 1000 24 0 66.6+7.3 63.7+1.2 71.8+3.5V
Hypothy roid 2108 7 18 95.5+5.6 97.8+7.0 %.7+1.5V
Letter 20000 16 0 88.8+1.9 93.1+3.6 9.6+5.7/
Optical 5620 64 0 53.84+2.6 55.2+1.8 57.943.2+/
Sick-enthyroid 2108 7 18 91.24+2.6 95.5+1.3 93.847.3X
Vehicle 846 18 0 31.246.2 32.5+7.6 36.849.5+/

The experimental results reveal that Flexible
NBTree performed much better than NBT ree in ten
of the 12 data sets, and not significantly different in
the other two cases. We attribute this disparity in ac-

1) ftp: //fip.ics. uci. edw/ pub/ machine learning-databases

curacy to the effectiveness of post-discretization strat-

€gy .

From the viewpoint of information theory, dis-
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cretization will bring about information loss. The
more continuous attributes used to predict; the more
information to be lost by pre-discretization. We con-
jecture that the pre-discretization strategy does not
take full advantage of the information that continuous
attributes supply and it can only partially help the in-
duction process for the data sets we tested. It is the
main reason why NBTree and C4. 5 performed poorly
on data sets Optical and Vehicle. To prove this hy-
pothesis, we sort data sets by the number of continu-
ous attributes. The comparison results are shown in

Fig.2.
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Fig. 2. The accuracy differences. The data sets are sorted by the

number of continuous attributes.

We can see from Fig. 2 that Flexible NBTree
significantly outperformed NBTree when data sets
have many continuous attributes. Especially for data
set German, NBTree was relatively worse than C4. 5
whereas Flexible NBTree provided a significant in-
crease in accuracy . The experimental results on the
natural domains confirm that Flexible NBTree can
mitigate the negative effect of information loss by ap-
plying post-discretization strategy.

What should be noted is that pre-discretization
will improve the efficiency and simplify the procedure
of learning algorithm. But Flexible NBT ree estimates
probability density function based on expected cross-
entropys which will need more cost of computation.
The number and the distribution of instances will also
affect the experimental results, thus Flexible Tree is
more applicable to large data sets, especially when
they contain many continuous attributes.

4 Summary

Standard decision tree learning algorithms can
not handle continuous attributes. The information
loss caused, by pre-discretization is_onerof the main

reasons why decision tree performs poorly when data
sets consist of many continuous attributes. In this pa-
pers we introduce a novel test selection measure, the
Bayes measure, to overcome this limitation. The
Bayes measure is based on Bayes theorem to select
test, which guarantees the robustness of the perfor-

mance of the decision tree.

On the basis of this, we propose a hybrid ap-
Flexible NBTree,
cretization strategy to mitigate the negative effect

proach, which applies post-dis-

caused by information loss. At the same time, it em-
bodies tradeoff between the accuracy and the com-
plexity of the learned discretization by applying MDL
principle.

We present an empirical comparison of different
decision tree learning algorithms. Experiments with
natural domains showed that Flexible NBTree gener-
alizes much better than NBTree and C4.5, both ap-
plying pre-discretization of continuous attributes. Al-
though more work remains to be done, our research
to date indicates that Flexible NBTree constitutes a
promising addition to the repertoire of induction algo-
rithms.

References

1 Quinlan J. R. Induction of decision trees. M achine Learning,
1986, 81.

2 Quinlan J. R. C4.5. Programs for Machine Learning. San Ma-
teo, CA: Morgan Kaufmann, 1993.

3 Quinlan, J. R. Improved use of continuous attributes in C4. 5.
Joumal of Artificial Intelligence Research, 1996, 4 77.

4 Breiman L. et al Classification and regression trees Statistics
Probability Series, Wadsworth, Belmont, 1984.

5 McCallum, A. K. etal. A comparison of event models for naive
bayes text classification. In: Proc. of AAAT-98 Workshop on
Learning for Text Categorizations Madison, WI, 1998, 41.

6 Kohavi, R. Scaling up the accuracy of mive-Bayes classifiers; A
decision-tree hybrid. In: Proc. of the 2nd International Conference
on Knowledge Discovery and Data Mining, Menb Pak, CA,
1996, 202.

7 Zhouw Z. H. et al. Extracting symbolic rules from trained neural
network ensemble. Al Communications. 2003, 16(1): 3.

8 Dougherty, J. et al. Supervised and unsupervied discretization of
coninuous features. In: Proc. of the 12th Intemational Conference
on Machine Learning San Francisco: Morgan Kaufmann Publish-
erss 1995, 194.

9 Silverman, B. W. Density estimation for statistics and data analy-
ds. Monographs on Statistics and A pplied Probabhility, 1986.

10 Smyth, P. et al. Retmwfitting decision tree classifiers using kemel
density estimation. In: Proc. of the 12th International Conference
on Machine Learning San Francisco: Morgan Kaufmann Publish-
ers, 1995, 506.

11 George H. et al. Estimating continuous distributions in bayesian
classifiers. In: Proc. of the 11th Conference on Uncertainty in Ar-
tificial Intelligence, Montreal: Morgan Kaufmann Publishers,
1995, 338.



