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　　Abstract　　By redef ining test selection measure , w e propose in this paper a new algorithm , Flexible NBTree , w hich induces a hy-
brid of decision tree and Naive Bayes.Flexible NBT ree mit igates the negative ef fect of information loss on test selection by applying post-

discretization strategy:at each internal node in the tree , we fi rst select the test w hich is the most useful for improving classif ication accura-
cy , then apply discretization of cont inuous test s.The finial decision tree nodes contain univariate spli ts as regular decision t rees, but the

leaves contain Naive Bayesian classif iers.To evaluate the performance of Flexible NBT ree , w e compare it w ith NBTree and C 4.5 , both
applying pre-discretizat ion of con tinuous at tributes.Experimen tal results on a variety of natural domains indicate that the classif ication ac-

cu racy of Flexible NBTree is substant ially imp roved.

　　Keywords:　machine learning , hybrid decision tree , Naive Bayes.

　　Decision tree-based methods of supervised learn-
ing represent one of the most popular approaches

w ithin the AI field for dealing wi th classification

problems.They have been w idely used for years in

many domains such as pattern recogni tion , data min-
ing , signal processing , etc.But standard decision t ree
learning algo rithms can handle discrete at tributes on-
ly[ 1] .Learning decision t ree f rom data consisting of

continuous and discrete variables is a key issue in ma-
chine learning.

The decision tree learning algorithms proposed

befo re commonly apply discretization of continuous

at t ributes[ 2 , 3] , then use the test selection measure fo r
discrete at tributes

[ 1 ,4]
to construct decision t ree , thus

continuous-valued predictive att ributes can be incor-
po rated into the learned tree.The effectiveness of

pre-discretizat ion has been proved in practice.But
from the view point of information theory , the infor-
mation loss caused by pre-discretization may af fect

test select ion , then in turn degrade the classification

accuracy to some ex tent.

Naive Bayes is known to be optimal if predictive

at t ributes are independent given the class.Although
the condi tional independence assumption is rarely

v alid in practical learning problems , experiments on
real w orld data have repeatedly show n it to be com-

petitive wi th much mo re sophisticated induction alg o-
rithms[ 5] .Since the leaves of decision tree consist of

very few instances , we suppose that the distribut ion
of those instances approx imately sat isf ies the condi-
tional independence assumption.If the leaves are re-
placed by Naive Bayes , the advantages of both deci-
sion t ree (i.e.segmentation)and Naive Bayes(evi-
dence accumulation f rom multiple at tributes)can be

utilized simultaneously[ 6] .

Based on the above considerations , we redefine

the test selection measure to overcome the limitat ion

in handling continuous att ributes and then propose a

new approach , Flexible NBTree , which induces a hy-
brid of decision t ree and Naive Bayes.Flexible

NBTree mit ig ates the negative ef fect of informat ion

loss on test selection by applying post-discretizat ion
st rategy

[ 7]
:at each internal node in the tree , we fi rst

select the test which is the most useful for improving

classification accuracy , then apply discretization of

continuous tests.The finial decision tree nodes con-
tain univariate split s as regular decision t rees , but the
leaves contain Naive Bayesian classifiers.

We introduce the post-discretization strategy in

Section 1.In Section 2 , we describe the hybrid ap-
proach—Flexible NBTree.At last , we explain our

experimental results and sum up the w hole paper in



Sections 3 and 4 , respectively .

1　The post-discretization strategy

1.1　Test selection measure δ

Definition 1.The training set T consists of pre-
dictive at t ributes{X 1 , … , Xn}and class at tribute C.
Each predictive at t ribute X i is ei ther continuous o r

discrete.

Definition 2.Let P(·)denote the probability ,
p(·) refer to the probability density funct ion and

Count(·)the size of data set.

The aim of decision t ree learning is to const ruct a

tree model which can describe the relationship be-
tween predictive att ributes{X 1 , …, X n}and class at-
tribute C in set T .

Tree model:X 1 , … , Xn ※C.

That is , the classification accuracy of the t ree

model on set T should be the highest.Co rrespond-
ing ly the Bayes measure δ, which is int roduced in

this section as a test selection measure , is also based
on this cri terion.

Let X represent one of the observable , predictive
at t ributes.If X is discrete , according to Bayes theo-
rem , there will be

P(C = cj|X = xi)=
P(C = cj , X = x i)

P(X = x i)
,

(1)
where xi is the value of att ribute X , cj the class label
of testing instance.The aim of Bayesian classification

is to decide and choose the class that maximizes the

posteriori probability.Since P(X =xi)in Eq.(1)is
the same for all classes , and does no t af fect the rela-
tive values of their probabilities , it can be igno red.
When some instances satisfy X =xi , their class labels
are most likely to be

c
＊
i =arg max

c
j
∈ C
P(C = cj|X = xi)

=arg max
c
j
∈ C
P(C = cj , X = xi). (2)

Correspondingly , if X is continuous , we w ill

have

P(C =cj|X = xi)

　　=
p(X = x i|C = cj)P(C = cj)

p(X = x i)
, (3)

where p(X =xi)is a constant independent of C and

then

c
＊
i =arg max

c
j
∈ C
P(C = cj|X = x i)

=arg max
c
j
∈ C

p(X = xi|C =cj)P(C = cj).(4)

Definition 3.Suppose X i has m distinct values.
We def ine the Bayes measure δas:

δ=
∑
m

i=1
Count(X = xi ∧ C = c

＊
i )

N
, (5)

where N is the size of set T .Intuitively spoken , δis
the classification accuracy w hen classif ier consists of

att ribute X only.It describes the extent to w hich the
model const ructed by at t ribute X fi ts class att ribute

C.The predictive at tribute w hich maximizes δis the
one that is the most useful fo r improving classif icat ion

accuracy.

1.2　Discretization of continuous att ributes

The aim of discretization is to parti tio n the con-
tinuous att ribute values into a discrete set of inter-
vals.Acco rding to Eq.(4), we have

c
＊
i =arg max

c
j
∈ C

p(X = x i|C = cj)P(C = cj),

where condi tional probability density funct ion

p(X C=cj)is continuous.Given arbit rary values

xi and xk , when x i※xk , there w ill be

p(X = xi|C = cj)P(C = cj)
　　※ p(X = x k|C = cj)P(C = cj).

So , the class labels inferred f rom Eq.(4)will

no t change wi thin a small interval of the values of X .
For clarification , suppose the relationship between

the dist ribution of X and C is show n in Fig.1.

Fig.1.　The relat ionship between the dist ribut ion of X and C.

We can see f rom Fig.1 that
C = c1 (x 1 ≤X < x 2 or x 4 ≤X ≤ x 5),

C = c2 (x 2 ≤X < x 3),
C = c3 (x 3 ≤X < x 4).

(6)
What should be noted is that the at tribute values

(c1 , c2 , c3)are inferred f rom Eq.(4), no t the true
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class labels of t raining instances.In the current ex-
ample , there are three candidate boundaries corre-
sponding to the values of X at which the value of C

changes:x 2 , x 3 , x4.If we use these boundaries to
discretize at t ribute X , the classification accuracy af ter
discretization will be equal to δ.So , the process of
computing δis also the process of discretization.The
Bayes measure δcan also be used to automatically

find the most appropriate boundaries for discretization

and the number of intervals.

Although this kind of discretizat ion method can

retain classif ication accuracy , i t may cause too many

interv als.The MDL principle , which is presented by
Dougherty et al.

[ 8]
to determine a stopping cri terion

for their recursive discretization st rategy , is used in

our experimental study to control the number of in-
tervals.

Suppose w e have so rted sequence S in ascending

o rder by the values of continuous at tribute X .Such a
sequence is partitioned by boundary B to two subsets

S 1 , S 2.The class information entropy of the parti-
tion denoted by E(X ,B ;S)is given by

E(X , B ;S)=
|S 1|
|S |

Ent(S 1)+
|S 2|
|S |

Ent(S 2),

where Ent(·)denotes the entropy funct ion ,

Ent(S i)=-∑
c
j
∈ C

P(cj , S i)log2P(cj , S i)

and P(cj , S i)stands for the proportion of the in-
stances in S i that belong to class cj.

According to MDL principle , the parti tio ning

w ithin S is reasonable iff

Gain(X , B ;S)≥
log2(N -1)

N
+
Δ(X , B ;S)

N
,

where Gain(X ,B ;S)=Ent(S)-E(X , B ;S)is the
information gain , which measures the decrease of the
w eighted average impurity of the partitions S 1 , S 2 ,
compared w ith the impuri ty of the complete set S .N
is the number of instances in set S , Δ(X , B;S)=
log2(3

k
-2)-[ k·Ent(S)-k 1·Ent(S 1)-k2·

Ent(S 2)] , k i is the number of class labels represent-

ed in set S i.This approach can then be applied recur-
sively to all adjacent part itions , thus create the f inal
interv als on att ribute X .

1.3　Parameter estimation

M aximum likelihood estimation of the probabili-
ty and joint probability in Eqs.(2) and (4) is

straightforw ard , then

 P(C=cj)=
Count(C=cj)

N
,

 P(C=cj , X =x i)=
Count(C=cj ∧ X =x i)

N
.

(7)
Kernel-based density estimation is the most

w idely used non-parametric density estimation tech-
nique.Compared with parametric density estimat ion

technique , it does not make any assumption of data

dist ribution.In this paper w e choose it to estimate

conditional probability density function in Eq.(4):

 p(X = xi|C =cj)=
1
nh j
∑
n

k =1
K

xi -xk
h j

,

(8)
where xk(k =1 , … , n)is the corresponding value of
att ribute X when C =cj , K(·)is a given kernel

function K(t)=(2π)-1/2e
-t

2
/2
.And h j is the co rre-

sponding kernel w idth , n is the number of training

instances when C=cj.

This estimate converges to the t rue probability

density function if the kernel function obeys certain

smoothness properties and the kernel w idth is chosen

appropriately[ 9] .If h j chosen is too small then spuri-
ous fine structure becomes visible , while if h j is too

large then the bimodal nature of the dist ribution is

obscured.One w ay of measuring the difference be-
tw een the true p(X =xi C=cj)and the estimated
 p(X =x i C=cj)is the expected cross-entropy , an
unbiased estimate w hich can be obtained by leave-one-
out cross-validation[ 10] :

CVCE =-
1
n ∑

n

k=1
log

1
(n -1)h j

∑
n

i=1, i≠k

K
xi -xk
h j

,

where h j=cX / n and cX is chosen to minimize the

estimated cross-entropy.In our experiments , we use
an exhaustive grid search where g rid width is 0.01
and the search is over cX ∈[ 0.2 , 0.8]

[ 10] .

2　Flexible NBTree:the hybrid learning algo-
rithm

We can now introduce the Flexible NBTree

learning algori thm , which is exact ly the same as Ko-
havi' s NBTree[ 6] but in two respects:the method

used for discretizing continuous att ributes and the

Naive Bayesian classif ier used for const ructing leaf

node.

The NBTree learning algori thm pre-discretizes
the data by applying an entropy-based algorithm and

uses standard Naive Bayes at the leaf node to handle
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pre-discretized and discrete att ributes.The Flexible

NBTree algori thm w e propose is show n below.It
uses post-discretization strategy to const ruct decision

tree and replaces leaf node w ith another version of

Naive Bayes , Flexible Naive Bayes
[ 11]
, which can di-

rectly handle continuous at t ributes , thus make dis-
cretizai ton unnecessary and the negative effect caused

by discretizai ton can be avoided.

Input:a t raining set S of pre-classified in-
stances.

Output:a hybrid decision tree w ith Flexible

Naive Bayes at the leaves.

1.From the predictive at t ribute set X 1 , … , Xn ,
select test X i which maximizes δ.

1)f tp:// ftp.i cs.uci.edu/ pub/machine-learning-databases

2.If X i is continuous , partition its value into a
discrete set of intervals according to subsection 1.2.

3.Parti tion S according to the value of X i.If
X i is continuous , a multi-way split is made for all

possible discrete intervals;if X i is discrete , a multi-
way split is made for all possible values.

4.If the descendant node sat isf ies specific stop-
ping critera , create a Flexible Naive Bayes as the leaf
node and return.

5.For each descendant node , the entire process
is recursively repeated on the portion of S that

matches the test leading to the node.

3　Experimental results and analyses

In order to evaluate the performance of Flexible

NBTree , we conducted an empirical study on 12 data
sets f rom the UCI machine learning repository

1)
.Be-

cause each data set consists of a set of classified in-
stances described in terms of continuous o r discrete

att ributes , they seemed likely candidates for cont rast-
ing the behavior of Flex ible NBTree and NBTree.
For comparison purpose , the stopping critera in our

experiments are the same:the relative reduction in

error for a split is less than 5%and there are no mo re

than 30 instances in the node.We also considered an-
other method to provide a reference point:the C4.5
Release 8

[ 1]
, a w ell-known algorithm for decision tree

induction.

For each domain , we used ten-fold cross valida-
tion to evaluate the generalization accuracy of the

three induction algorithms.Table 1 summarizes the

characteristics of the data sets and compares the ex-
perimental results.C4.5 deno tes the decision tree

that applied a local , MDL inspired penalty to adjust

the gain of a binary split to pre-discretize continuous
values.NBTree denotes the decision tree that learned
from the data sets w hich were pre-discretized using an
entropy-based alg orithm.The symbols √(×)denote
relatively bet ter (worse)performance of Flexible

NBTree to NBTree.

Table 1.　Description of data set s and comparison of experimental results

Data S ets Instances Continuous at t ributes Discrete at tributes C4.5 NBTree Flexible NBT ree

Abalone 4177 7 1 73.8±3.6 75.0±2.1 78.6±6.8√

Anneal 898 6 32 81.3±1.6 85.6±3.5 87.5±5.2√

Aust ralian 690 6 8 65.8±1.9 62.2±3.2 61.0±8.7×

Breast 699 10 0 63.8±4.6 64.3±2.9 65.9±5.8√

Crx 690 6 9 71.6±8.6 75.4±3.9 76.7±2.5√

Diabetes 768 8 0 67.2±2.6 69.8±1.9 71.7±5.7√

German 1000 24 0 66.6±7.3 63.7±1.2 71.8±3.5√

Hypothy roid 2108 7 18 95.5±5.6 97.8±7.0 98.7±1.5√

Let ter 20000 16 0 88.8±1.9 93.1±3.6 95.6±5.7√

Opt ical 5620 64 0 53.8±2.6 55.2±1.8 57.9±3.2√

Sick-enthyroid 2108 7 18 91.2±2.6 95.5±1.3 93.8±7.3×

Vehicle 846 18 0 31.2±6.2 32.5±7.6 36.8±9.5√

　　The experimental results reveal that F lexible

NBTree performed much bet ter than NBT ree in ten

of the 12 data sets , and not significant ly different in

the o ther tw o cases.We at tribute this disparity in ac-

curacy to the effectiveness of post-discretization st rat-
egy .

From the view point of informat ion theory , dis-
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cretization w ill bring about info rmation loss.The
more continuous at tributes used to predict , the more
information to be lost by pre-discretization.We con-
jecture that the pre-discretization st rateg y does not

take full advantage of the info rmation that continuous

at t ributes supply and it can only partially help the in-
duction process for the data sets w e tested.It is the
main reason why NBTree and C4.5 performed poo rly
on data sets Optical and Vehicle.To prove this hy-
po thesis , we so rt data sets by the number of continu-
ous att ributes.The comparison results are show n in

Fig.2.

Fig.2.　The accuracy dif ferences.The data set s are sorted by the
number of continuous att ributes.

We can see from Fig.2 that Flex ible NBTree

signif icantly outperfo rmed NBTree when data sets

have many continuous at tributes.Especially fo r data

set German , NBTree was relatively worse than C4.5
whereas Flexible NBTree provided a significant in-
crease in accuracy .The experimental results on the

natural domains confirm that Flexible NBTree can

mitigate the negative effect of information loss by ap-
plying post-discretization strategy.

What should be no ted is that pre-discretization
w ill improve the ef ficiency and simplify the procedure

of learning algorithm.But Flexible NBT ree estimates
probability density function based on expected cross-
entropy , which will need more cost of computation.
The number and the distribution of instances w ill also

affect the experimental results , thus Flexible Tree is
more applicable to large data sets , especially w hen

they contain many continuous at tributes.

4　Summary

Standard decision t ree learning algo rithms can

not handle cont inuous at tributes.The information

loss caused by pre-discretization is one of the main

reasons why decision t ree performs poo rly w hen data

sets consist of many continuous at t ributes.In this pa-
per , we introduce a novel test selection measure , the
Bayes measure , to overcome this limitation.The
Bayes measure is based on Bayes theorem to select

test , which guarantees the robustness of the perfor-
mance of the decision tree.

On the basis of this , we propose a hybrid ap-
proach , Flexible NBTree , which applies post-dis-
cretizat ion strategy to mitigate the negat ive effect

caused by information loss.At the same time , it em-
bodies t radeoff betw een the accuracy and the com-
plexi ty of the learned discretization by applying MDL

principle.

We present an empirical comparison of dif ferent

decision t ree learning algori thms.Experiments w ith
natural domains showed that Flexible NBTree gener-
alizes much bet ter than NBTree and C4.5 , both ap-
plying pre-discretization of continuous att ributes.Al-
though more work remains to be done , our research
to date indicates that F lexible NBTree constitutes a

promising addi tion to the repertoire of induction alg o-
rithms.
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